Hölder and Minkowski type inequalities for pseudo-fractional integral
نویسندگان
چکیده
منابع مشابه
Hölder and Minkowski type inequalities for pseudo-integral
There are proven generalizations of the Hölder's and Minkowski's inequalities for the pseudo-integral. There are considered two cases of the real semiring with pseudo-operations: one, when pseudo-operations are defined by monotone and continuous function g, the second semiring ([a, b], sup,), where is generated and the third semiring where both pseudo-operations are idempotent, i.e., È = sup an...
متن کاملGeneral Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملIntegral Identities and Minkowski Type Inequalities Involving Schouten Tensor
New formulas for the integration of the k-th elementary symmetric functions of the Shouten tensor are derived and applied to deduce some Minkowski type inequalities.
متن کاملIntegral Inequalities for h(x)-Riemann-Liouville Fractional Integrals
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
متن کاملSome Weighted Integral Inequalities for Generalized Conformable Fractional Calculus
In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractional differential calculus
سال: 2022
ISSN: ['1847-9677']
DOI: https://doi.org/10.7153/fdc-2022-12-11